El suavizado de datos elimina la variación aleatoria y muestra las tendencias y los componentes cíclicos Inherente a la recopilación de datos tomados en el tiempo es una forma de variación al azar. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Una técnica de uso frecuente en la industria es suavizar. Esta técnica, cuando se aplica correctamente, revela más claramente la tendencia subyacente, los componentes estacionales y cíclicos. Existen dos grupos distintos de métodos de suavizado Métodos de promedio Métodos exponenciales de suavizado Tomar promedios es la forma más sencilla de suavizar los datos Primero investigaremos algunos métodos de promediación, como el promedio simple de todos los datos anteriores. Un gerente de un almacén quiere saber cuánto un proveedor típico ofrece en unidades de 1000 dólares. Se toma una muestra de 12 proveedores, al azar, obteniendo los siguientes resultados: La media o media calculada de los datos 10. El gestor decide usar esto como la estimación para el gasto de un proveedor típico. ¿Es esto una buena o mala estimación? El error cuadrático medio es una forma de juzgar qué tan bueno es un modelo Vamos a calcular el error cuadrático medio. La cantidad verdadera del error gastada menos la cantidad estimada. El error al cuadrado es el error anterior, al cuadrado. El SSE es la suma de los errores al cuadrado. El MSE es la media de los errores al cuadrado. Resultados de MSE por ejemplo Los resultados son: Errores y errores cuadrados La estimación 10 La pregunta surge: ¿podemos usar la media para pronosticar ingresos si sospechamos una tendencia? Un vistazo a la gráfica abajo muestra claramente que no debemos hacer esto. El promedio pesa todas las observaciones pasadas igualmente En resumen, declaramos que El promedio simple o la media de todas las observaciones pasadas es sólo una estimación útil para pronosticar cuando no hay tendencias. Si hay tendencias, utilice estimaciones diferentes que tengan en cuenta la tendencia. El promedio pesa todas las observaciones pasadas igualmente. Por ejemplo, el promedio de los valores 3, 4, 5 es 4. Sabemos, por supuesto, que un promedio se calcula sumando todos los valores y dividiendo la suma por el número de valores. Otra forma de calcular el promedio es añadiendo cada valor dividido por el número de valores, o 3/3 4/3 5/3 1 1.3333 1.6667 4. El multiplicador 1/3 se llama el peso. En general: barra frac fracción izquierda (frac derecha) x1 izquierda (frac derecha) x2,. ,, Izquierda (frac derecha) xn. El (izquierda (frac derecha)) son los pesos y, por supuesto, suman a 1. media móvil de media de datos de series de tiempo (observaciones igualmente espaciadas en el tiempo) de varios períodos consecutivos. Llamado en movimiento porque se recalcula continuamente a medida que se obtienen nuevos datos, progresa eliminando el valor más antiguo y agregando el valor más reciente. Por ejemplo, el promedio móvil de las ventas de seis meses se puede calcular tomando el promedio de las ventas de enero a junio, luego el promedio de las ventas de febrero a julio, luego de marzo a agosto, y así sucesivamente. Las medias móviles (1) reducen el efecto de las variaciones temporales en los datos, (2) mejoran el ajuste de los datos a una línea (un proceso llamado suavizado) para mostrar la tendencia de los datos más claramente, y (3) resaltan cualquier valor superior o inferior al tendencia. Si está calculando algo con una variación muy alta lo mejor que puede ser capaz de hacer es averiguar el promedio móvil. Quería saber cuál era el promedio móvil de los datos, así que tendría una mejor comprensión de cómo estábamos haciendo. Cuando usted está tratando de averiguar algunos números que cambian a menudo lo mejor que puede hacer es calcular el promedio móvil. En un ejemplo de SMA, considere una garantía con los siguientes precios de cierre en 15 días: Semana 1 (5 días) 20, 22, 24, 25, 23 Semana 2 (MÁS INFORMACIÓN) 5 días) 26, 28, 26, 29, 27 Semana 3 (5 días) 28, 30, 27, 29, 28 Un MA de 10 días promediaría los precios de cierre de los primeros 10 días como el primer punto de datos. El próximo punto de datos bajaría el precio más temprano, agregaría el precio el día 11 y tomaría el promedio, y así sucesivamente como se muestra a continuación. Como se mencionó anteriormente, las AMs se retrasan en la acción de los precios actuales porque se basan en precios pasados, mientras más largo sea el período de tiempo para la MA, mayor será el retraso. Así, un MA de 200 días tendrá un grado mucho mayor de retraso que un MA de 20 días porque contiene precios durante los últimos 200 días. La longitud de la MA a utilizar depende de los objetivos de negociación, con MA más cortos utilizados para el comercio a corto plazo y más largo plazo MA más adecuado para los inversores a largo plazo. El MA de 200 días es ampliamente seguido por inversores y comerciantes, con rupturas por encima y por debajo de este promedio móvil considerado como señales comerciales importantes. Las MA también imparten señales comerciales importantes por sí solas, o cuando dos medias se cruzan. Un aumento MA indica que la seguridad está en una tendencia alcista. Mientras que un MA decreciente indica que está en una tendencia bajista. Del mismo modo, el impulso ascendente se confirma con un cruce alcista. Que se produce cuando una MA a corto plazo cruza por encima de un MA a más largo plazo. El impulso descendente se confirma con un cruce bajista, que ocurre cuando una MA a corto plazo cruza por debajo de un MA a más largo plazo.
Comments
Post a Comment